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EN0 (essentially non-oscillatory) schemes can provide uniformly high order accuracy right 

up to discontinuities while keeping sharp, essentially non-oscillatory shock t ansitions. Recently 

we obtained an efficient implementation of EN0 schemes based on fluxes and hY T Runge-Kutta 

time discretizations. The resulting code is very simple to program for multi-dimensions. EN0 
schemes are especially suitable for computing problems with BOTH discontinuities AND fine 
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structures in smooth regions, such as shock interaction with turbulence, for which results for 

one dimensional and two dimensional Euler equations are presented. We observe mu& better 

resolution by using third order EN0 schemes than by using second order TVD schemes for such 
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I Efficient Implementation of EN0 Schemes 

! I  4 1 4  
I = * *  The solutions to systems of hyperbolic conservation laws of the type 
NU** 

ut -F fi(u)zi = o (or = g(u, x, t ) ,  a forcing term) (1.la) 

u(x,O) = U0(X) (l.lb) 
i= 1 

where u = u1, ... ,urn)=, x = (d ,..., zd),  and for real ( = ((1 ,..., c d ) ,  the combination 

is assumed to have m real eigenvalues and a complete set of eigenvectors, may de- 

velop discontinuities (shocks, contact discontinuities, etc.) regardless of the smoothness of the 

initial condition. Examples of (1.1) include Euler equations of gas dynamics. EN0 schemes, 

originally constructed by Harten, Osher, Engquist and Chakravarthy [l-41, use a locd adaptive 
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stencil to obtain information automatically from regions of smoothness when the solution devel- 

ops discontinuities. As a result, approximations using these methods can obtain uniformly high 

order accuracy right up to discontinuities, while keeping a sharp essentially non-oscillatory shock 

transition. The original EN0 schemes in [l-41 used a cell-average framework which involved a 

reconstruction procedure to recover accurate point d u e s  from cell averages, and a Lax-Wendroff 

procedure (replacing time derivatives by space derivatives, using the P.D.E.) for the time dis- 

cretization. This can become a bit complicated for multi-dimensional problems [l]. For ease 

of implementation we constructed [7, 81 EN0 schemes applying the adaptive stencil idea to the 

numerical fluxes and using a TVD Runge-Kutta type high order time discretization. These EN0 

schemes skip the reconstruction step and the Lax-Wendroff time discretization procedure, hence 

the resulting code is simple for multi-space dimensional problems. 

Let us describe our scheme first in scalar, one dimensional case (d = m = 1 in (1.1)). The 

scheme, in its method-of-lines form, is 

wh&e the numerical flux fj++ approximates h(zj++) to a high order, with h(z)  defined by 

We first obtain the primitive function of h(z ) :  

then construct polynomials interpolating {Hj++} in an EN0 fashion, i.e. by obtaining a locally 

"smoothest" stencil starting from one or two points, then adding one point to the stencil at each 

stage by comparing two divided differences and choosing the one which is smaller in absolute 

value. fj++ is then taken as the derivative of this interpolating polynomial d u a t e d  at zj++. 

"Upwinding" is achieved by the initial choice in the stencil-choosing process, and it is also crucial 

for the evident stability of these methods. We also need an entropy fix in any "expansion shock 

cell?. For details, see [7,8]. 



The time discretization of (1.2) is implemented via a class of TVD Runge-Kutta type methods 

[7]. For example, the third order case is 

(1.68) 

(1.6b) 

(1.6~) 

(1.6d) 

This class of Runge-Kutta methods was shown to have the property that the total variation of 

the spatial part is not increased during the time discretization under a suitable restriction on e. 
For multi-dimensions the right-hand-side of (1.2) is applied to each of the terms fi(u),, in 

(l.la), keeping all other variables fixed. The Runge-Kutta methods such as (1.6) can still be 

applied. 

For nonlinear systems, we simply apply the algorithms in each local characteristic field. We 

take an 1-dimensional system to exemplify this process. Let Ai++ be some "average?' Jacobian 

at xi++. ~ x a m ~ l e s  include Ai++ = ~ I u = + ( u j + u j + l )  or, in the case of Euler equations of gas 

(be) where u( .y)  is the Roe average of uj and u,+l [SI. We then use 

the eigenvalues of Ai++, project to the local characteristic fields: and finally apply our scalar 

algorithms in each of these fields. See [8] for more details. 

iw 
J +  2 

dynamics Ai++ = lu=,, 
j++ 

2. Numerical Tests - Shock Interaction with Turbulence 

Example 1. We start with one dimensional Euler equations of gas dynamics for a polytropic gas, 

i.e. (1.1) with d = 1, m = 3, and 

u = ( P ,  M ,  E)T,  f(u) = qu + (0, P, q q T  (2.1a) 

where . 
(2.lb) 

We use 7 = 1.4, and an initial condition 

p = 3.857143; ' q = 2.629369; P = 10.333333 when x < -4 
(2.2) p=l+es in5x ;  q = O ;  P = l  when x 2 -4 

If E = 0, this is a pure Mach = 3 shock moving to the right. 

For a detailed linearized analysis see [5]. This linearized analysis, predicts fine structures for 

.the density profile because of the different propagation speeds of entropy aad acoustic waves. For 



e small (say E = 0.05) we observe results close to linearized analysis. For E = 0.2 we can observe 

nonlinear effects such as additional small shocks in the density profile. 

This is a good test problem because both shocks and fine structures in smooth regions exist. 

Traditional high order methods will develop oscillations near shocks, and TVD methods, while 

nonlinearly stable, will lose resolution for the fine structures because of the degeneracy to first 

order accuracy at smooth critical points. 

In Figure 1-4, the solid lines are numerical solutions of .third order EN0 scheme (henceforth 

shortened to ENO-3) with 1600 grid points. This can be regarded as a converged solution. From 

Figure 1, we see that ENO-3 with 400 points almost gives a converged solution, while TVD-2 (a 

second order MUSCL type TVD scheme) with 800 points just has roughly the same resolution 

as ENO-3 with 200 points. On the other hand, the improvement of ENO-3 over TVD-2 is not so 

significant for the velocity and pressure profiles (Figure 2), because they both lack any detailed 

structure. 

To further exemplify the advantage of higher order methods, we increase the spatial order of 

OUT EN0 scheme and compare density and entropy proaes with 300 grid points using ENO-3,4, 

5, 6. We clearly observe better resolution by going to higher spatial orders (Figure 3). In Figure 

3 the time discretization is third order (1.6) with At decreased for high spatial orders. When 

we use higher order time discretizations as well we observe further improvements in resolution 

(pictures not idcluded). 

We finally test the effect of physical viscosities by solving the Navier-Stokes equation, i.e. 

(1.1)-(2.1) with a right-hand-side 

We used Pr = 1, M = 3 and gradually increased the Reynolds number Re: Clearly we observe 

(Figure 4) convergence to Euler's result as the physical viscosity goes to zero (Re + 00). To verify 

the theory (rigorously proven by Kreiss) that for wave lengths > c - -& the problem is viscosity 

dominated and otherwise essentially inviscid: we re-ran our result with a different frequency for 

the sine wave. We do observe the correctness of the above theory with c x 3 in our scaling. The 

pictures are omitted. 

Example 2. Next we come to two dimensional Euler equations, Le. (1.1) with d = 2, m = 4, 

and (we use f ,g ,z ,y  instead of fl,f2,zl,z2): 

(2.4a) 



where 

(2.4b) 

The test problem we choose is a moving shock interacting with compressible turbulence [9, 

lo]. At t = 0, a Mach 8 shock at x = -1.0 is moving into a state with PR = 1, PR = 1 
and qz = -2 sin 8, cos(zkR COS OR + ykR sine& qr - - $$ cos 8R cos(zkR cos 8 R  + ykR sin 8 R )  

where kR = 27r, 8R = t ,  and CR = e. We display the results at t = 0.20 in Figure 5. Notice 

that in [9, 101 similar results were obtained using a shock-fitting rather than a shock capturing 

method. This is actually a two dimensional analogue of Example 1 - a combination of shocks and 

fine structures in smooth regions. Hence it is again a good test problem for the high order EN0 

schemes. The successful computation of this example shows that EN0 schemes have excellent 

potent i d  for shock- t urbulence computations. 

Acknowledgements: We thank David Gottlieb, Ami Harten, Lawrence Sirovich and Thomas Zang 

for many helpful discussions and suggestions. 
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2 ( d ) :  TVD-2, pressure Figure 1: dens i ty  

Ftgure 2: 200 points 
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Figure 3: 300 points ,  density (1eft)and entropy ( r ight )  
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Figure 4: ENO-3 with 400 points for Navier-Stokes equation. 
The solid line is for the solution of Euler's equation. 
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Figure 5: ENO-3 


